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Abstract

We use the work of Pfaltzgraff on subordination chains in Cn to recover a growth
theorem for starlike mappings of the unit ball established recently by Barnard, FitzGer-
ald and Gong. We also introduce a class of strongly starlike maps for which we con-
struct, aided by the aforementioned technique, an explicit quasiconformal extension to
Cn. Several examples are discussed at the end.

1. Introduction

Let f be a univalent map of the unit disc, with f(0) = 0 and f ′(0) = 1. The celebrated
Koebe theorem asserts that the image of f contains a disc about the origin of radius 1/4,
1/4 being sharp. This theorem has no analogue in several complex variables, whether one
deals with normalized univalent maps of the unit ball Bn or the polydisc. By normalized we
mean fixing the origin and having the identity as differential at that point. In particular,
the classical growth theorem in dimension 1

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

(1.1)

is no longer valid in higher dimensions. Remarkably, (1.1) persists for arbitrary n when
considering the subclass of starlike maps of Bn, as Barnard, FitzGerald and Gong have
recently shown [BFG 1]. The result is sharp. Recall that a map is called starlike if the
image is starlike with respect to the origin. Suffridge has given the following alternative
local characterization: let w(z) = (Df)−1(f), where the differential and the function are
evaluated at z. Then f is starlike if and only if

Re〈z̄, w(z)〉 ≥ 0 . (1.2)

Here 〈a, b〉 =
∑
aibi for a, b ∈ Cn [S 1]. When n = 1 then (1.2) recovers the condition

Re{z f ′
f
} ≥ 0. The proof in [BFG 1] uses (1.2) to estimate d

ds
|f |2 along the (arclength

parametrized) preimages in the ball of straight line segments in the image f(Bn).
On the other hand, the bounds in (1.1) hold for a more general class of functions, namely

those associated to subordination chains. Let f(z, t) be a family of functions on Bn× [0,∞),
holomorphic in z for each t, normalized so that f(0, t) = 0 and Df(0, t) = etI. We say that
f(z, t) forms a subordination chain provided that for each s, t, 0 ≤ s ≤ t, there exists a
(Schwarz) function v(z, s, t), holomorphic in z, such that |v(z, s, t)| ≤ 1, v(0, s, t) = 0 and

f(z, s) = f(v(z, s, t), t) .
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Note that |v(z, s, t)| ≤ |z| as a consequence of Schwarz lemma. Subordination chains arise
as solutions of the so called Löwner differential equation

∂

∂t
f(z, t) = Df(z, t)(h(z, t)) , (1.3)

where h(z, t) is holomorphic in z, with h(0, t) = 0, Dh(0, t) = I and Re〈z̄, h(z, t)〉 ≥ 0.
In connection to univalence and quasiconformal extension, subordination chains were

originally studied in the plane by Pommerenke [P] and Becker [B], and later by Pfaltzgraff
in higher dimensions [Pf 1], [Pf 2].

The estimates in (1.1) for starlike maps follow from the general theory by inserting f as
the initial element f(z, 0) of the subordination chain

f(z, t) = etf(z) ,

which satisfies (1.3) with h(z, t) = w(z). From this point of view it is also natural to consider
what we would like to call strongly starlike maps. Let z ∈ ∂Bn and let ζ ∈ B1. Then

0 ≤ Re〈ζz, w(ζz)〉 = Re
∑

ζ̄ z̄iwi(ζz) = |ζ|2Re
∑

z̄i
wi(ζz)

ζ
.

The function

g(ζ) =
∑

z̄i
wi(ζz)

ζ
(1.4)

is holomorphic because w(0) = 0 and has non-negative real part. Furthermore, since
Dw(0) = I it follows that g(0) = 1. We say that f is strongly starlike if the values of
g lie on a fixed compact subset of the right half-plane, independent of z. This is equivalent
to saying that

g(ζ) =
1 + σ(ζ)

1− σ(ζ)
, (1.5)

where σ(0) = 0 and |σ(ζ)| ≤ c < 1, c an absolute constant.
For strongly starlike maps the following estimates hold:

|z|
(1 + c|z|)2

≤ |f(z)| ≤ |z|
(1− c|z|)2

. (1.6)

In addition, f will admit a quasiconformal extension to Cn if it is already quasiconformal
in Bn. This extra hypothesis guarantees a Lipschitz continuous extension to the closed ball.
The extension for |z| > 1 is given by |z|f(z/|z|), which is Lipschitz continuous as well. In
the plane, quasiconformality in the disc is, of course, not an issue and a quasiconformal
extension exists simply as a consequense of the strong starlikeness.

In the last section we will discuss in some detail several examples of starlike and strongly
starlike mappings. We shall also present a way of efficiently computing the normalized map
f for a given w.
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2. Subordination chains and growth

Let f be starlike, so that (1.5) holds with |σ(ζ)| ≤ c ≤ 1, and let w = (Df)−1(f). The
next lemma is due to Pfaltzgraff (Lemma 2.1, [Pf 1]). The proof, which we shall omit, is
based on an application of Schwarz lemma to the function g(ζ).

Lemma 1: The function w satisfies

|z|21− c|z|
1 + c|z|

≤ Re〈z̄, w(z)〉 ≤ |z|2 1 + c|z|
1− c|z|

. (2.1)

Let the chain f(z, t) be defined by

f(z, t) = etf(z) .

Then
∂

∂t
f(z, t) = etf(z) = et(Df)(w) = Df(z, t)(h(z, t))

with h(z, t) = w(z). It follows now from Theorem 2.2 in [Pf 1] that f(z, t) is a subordination
chain. His result applies to a more general class of functions h(z, t), whereas in our case
one can show more or less directly that f(z, t) forms a subordination chain. Let v(z, s, t) be
defined by

v(z, s, t) = f−1(es−tf(z)) . (2.2)

This is well-defined for 0 ≤ s ≤ t because f is starlike. By construction

f(z, s) = esf(z) = etf(v(z, s, t)) = f(v(z, s, t), t) . (2.3)

We need to show that v is a Schwarz function. Since f(0) = 0 it follows that v(0, s, t) = 0.
From (2.2) we have

∂

∂t
v(z, s, t) = (Df)−1(−es−tf(z)) = −(Df)−1(es−tf(z)) ,

where Df is evaluated at f−1(es−tf(z)). Using starlikeness we have

∂

∂t
v(z, s, t) = −w(f−1(es−tf(z))) = −w(v(z, s, t)) .

We compute

∂

∂t
|v(z, s, t)|2 = 2|v(z, s, t)| ∂

∂t
|v(z, s, t)| = 2Re 〈v(z, s, t),

∂

∂t
v(z, s, t)〉

hence
∂

∂t
|v(z, s, t)| = −|v(z, s, t)|−1Re 〈v(z, s, t), w(v(z, s, t))〉 ≤ 0 . (2.4)

Since v(z, s, s) = z we conclude that |v(z, s, t)| ≤ |z|.
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Theorem 1: The function f satisfies

|z|
(1 + c|z|)2

≤ |f(z)| ≤ |z|
(1− c|z|)2

. (2.5)

Proof: Using (2.4) together with the bounds in (2.1), a simple integration yields

et
|v(z, s, t)|

(1− c|v(z, s, t)|)2
≤ es

|z|
(1− c|z|)2

(2.6)

and

es
|z|

(1 + c|z|)2
≤ et

|v(z, s, t)|
(1 + c|v(z, s, t)|)2

(2.7)

(see Lemma 2.2 in [Pf 1]). Observe that, as a consequence of the normalizations on f , (2.2)
implies that

lim
t→∞

v(z, s, t) = 0

and
lim
t→∞

etv(z, s, t) = esf(z) .

The bounds in (2.5) follow now by taking the limit in (2.6) and (2.7).

3. Extensions to Bn and Cn

Theorem 2: Let f be a strongly starlike map of Bn and suppose that f admits a continuous
extension to the closure Bn. Then the extension is univalent in Bn.

Proof: We follow Pfaltzgraff. Let f(z, t) be the associated subordination chain with Schwarz
functions v(z, s, t), 0 ≤ s ≤ t. The estimate (2.6) implies that v(Bn, s, t) ⊂ Bn when s < t.
If f admits a continuous extension to the closed ball, then for s < t, f(Bn, s) ⊂ f(Bn, t)
as a consequence of the relation (2.3). This enables us to define a continuous extension of
v(z, s, t) to Bn via the equation

v(z, s, t) = f−1(f(z, s), t) .

For |z| < 1,

|z − v(z, s, t)| = |
∫ t

s
h(v(z, s, τ), τ)dτ | ≤

∫ t

s
|v|1 + c|v|

1− c|v|
dτ ≤ 1 + c

1− c
(t− s) . (3.1)

It is easy to see that this estimate holds as well for |z| ≤ 1. We can now show that f is
univalent in the closed ball. Suppose that f(z1) = f(z2) for z1, z2 ∈ Bn. Then for t > 0

f(z1) = f(v(z1, 0, t), t) = f(v(z2, 0, t), t) = f(z2) ,

and since f is univalent in Bn we conclude that

v(z1, 0, t) = v(z2, 0, t) .
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By letting t→ 0, (3.1) implies that z1 = z2.

Unlike in the case n = 1, when a holomorphic map in the unit disc is trivially quasiconfor-
mal, this additional assumption becomes essential when studying quasiconformal extensions
in higher dimensions. Recall that a map f : Ω ⊂ Rm → Rm is said to be quasiconformal if
it is differentiable a.e., ACL (absolutely continuous on lines) for almost all lines, and

||Df ||m ≤ K|det Df | a.e. Ω .

Here ||Df || stands for the usual norm

||Df || = sup{|Df(X)| : |X| = 1}

and the constant K is called the quasiconformal distortion of the map f .

Theorem 3: Let f be a quasiconformal, strongly starlike map of Bn with |w| uniformly
bounded. Then f admits a Lipschitz continuous extension to Bn and a quasiconformal exten-
sion to Cn.

Proof: We first show that ||Df || is uniformly bounded in Bn. This will imply that f admits
a Lipschitz continuous extension to the closed ball.

The first inequality in (2.1) together with the Cauchy-Schwarz inequality imply that

|z|1− c|z|
1 + c|z|

≤ |w| .

Since Df(w) = f , it follows from (2.5) that

|Df(
w

|w|
)| ≤ 1 + c|z|

(1− c|z|)3
≤ 1 + c

(1− c)3
.

Note that the Cauchy-Riemann equations guarantee that, with the canonical identifications,
Df(w) = f remains true in the real sense. Since f is quasiconformal in Bn, we conclude
that for some constant K and all unit vectors X,

|Df(X)| ≤ K
1 + c

(1− c)3
.

This proves that ||Df || is uniformly bounded in the ball. (Because |w| is uniformly bounded,
a similar argument implies that the infimum of |Df(X)| over all unit vectors is bounded below
by some positive constant, and therefore f is actually quasi-isometric in Bn.)

Let us still denote by f the extension to Bn and define F : R2n → R2n by

F (z) =


f(z) , |z| ≤ 1

|z|f( z
|z|) , |z| > 1

. (3.2)

This definition is natural from the point of view of subordination chains. We claim that F
is the desired quasiconformal extension of f . It is clear that F is continuous in R2n. Note
that

F (z) =


f(z, 0) , |z| ≤ 1

f( z
|z| , log |z|) , |z| > 1

. (3.3)
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Since f(Bn, s) ⊂ f(Bn, t) for 0 ≤ s < t and since f is univalent in the closed ball, we
conclude that, in any case, F is univalent in R2n. In order to show that F is quasiconformal,
we follow a standard argument of dilation (see, e.g., [B], [Pf 2]). For r < 1 we consider the
functions Fr defined by

Fr(z) =


f(rz) , |z| ≤ 1

|z|f(r z
|z|) , |z| > 1

,

where 0 < r < 1.
Since f is Lipschitz continuous in the closed ball, it is easy to see that, as r tends to 1,

Fr → F uniformly in Bn. It follows that the convergence is uniform on compact subsets
of R2n. We are left to show that Fr is quasiconformal in R2n and that the quasiconformal
distortion is uniformly bounded when r is close to 1. It is clear that Fr is differentiable away
from the set {|z| = 1}, therefore it is differentiable a.e.. For |z| < 1,

DFr(z) = rDf(rz) (3.4)

hence ||DFr|| is uniformly bounded in Bn. When |z| > 1 we have

DFr(z) = f(r
z

|z|
)Tgrad |z|+ r|z|Df(r

z

|z|
)(|z|−1I− |z|−3zTz) . (3.5)

We explain the notation. Using the standard identification of Cn with R2n, a complex vector
a is written in real components (ai). Then aTb stands for the (2n)× (2n) matrix with entries
aibj. Since |f |, ||Df || and grad |z| = |z|−1z are uniformly bounded, equation (3.5) shows
that so is ||DFr|| for |z| > 1. From the continuity of Fr everywhere it follows that this map
is Lipschitz continuous in R2n, and hence ACL a.e..

Because f is quasiconformal in Bn, (3.4) implies that the same holds for Fr. Furthermore,
the quasiconformal distortions in Bn are the same. For |z| > 1 we use (3.5). Let ζ = r|z|−1z.
Then

DFr(z) = Df(ζ){1

r
w(ζ)Tζ + r(I− 1

r2
ζTζ)}

= Df(ζ){rI +
1

r
(w(ζ)− ζ)Tζ}

= rDf(ζ){I +
1

r2
(w(ζ)− ζ)Tζ} . (3.6)

Let M=M(ζ) be the matrix r−2(w(ζ)− ζ)Tζ. It is easy to see that ||M|| = r−2|w(ζ)− ζ||ζ|,
which is uniformly bounded by the assumption on w. Also, since M has rank 1,

det (I + M) = 1 + trM = 1 + r−2Re〈ζ̄ , w(ζ)− ζ〉
= r−2Re〈ζ̄ , w(ζ)〉

≥ r−2|ζ|21− c|ζ|
1 + c|ζ|

≥ 1− c
1 + c

.

Equation (3.6) gives

||DFr(z)|| ≤ r||Df(ζ)|| ||I + M||
≤ r||Df(ζ)||(1 + ||M||) ≤ K1||Df(ζ)|| (3.7)
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for some absolute constant K1. It also follows from (3.6) that

|det DFr(z)| = r2n|det Df(ζ)| |det (I + M)| ≥ r2n
1− c
1 + c

|det Df(ζ)| . (3.8)

Finally, since f is quasiconformal in Bn, (3.7) and (3.8) imply

||DFr(z)||2n ≤ K2n
1 ||Df(ζ)||2n ≤ KK2n

1 |det Df(ζ)|

≤ r−2n
1 + c

1− c
KK2n

1 |det DFr(z)| .

This shows that Fr is quasiconformal for positive r and that, for r close to 1, the quasicon-
formal distortion is uniformly bounded. The proof is now finished.

In dimension 1, it is not necessary to assume quasiconformality in the ball or uniform
boundedness of |w|. The first condition is automatically satisfied with K = 1 and the second
one can be established from the strong starlikeness using Schwarz lemma.

4. Some examples

This section will be devoted to presenting examples of starlike and strongly starlike
mappings. We will also address the question of existence and uniqueness of the map f with
(Df)−1(f) = w, where w is a given normalized function satisfying Re〈z̄, w〉 ≥ 0.

Example 1 : Let f(z1, z2) = (z1, z2 − z1z2). Then

Df =

(
1 0

−z2 1− z1

)

and
(Df)−1(f) = w = (z1,

z2
1− z1

) .

Recall the function g in (1.4) given by g(ζ) =
∑
z̄i
wi(ζz)
ζ

, where z ∈ ∂Bn and ζ ∈ B1. Here

g(ζ) = z̄1
ζz1
ζ

+ z̄2
ζz2

ζ(1− ζz1)
=

1− |z1|2z1ζ
1− z1ζ

and it can be written in the form 1+σ
1−σ where

σ(ζ) =
g(ζ)− 1

g(ζ) + 1
=

(1− |z1|2)z1ζ
2− (1 + |z1|2)z1ζ

.

Hence

|σ(ζ)| ≤ |z1|(1− |z1|2)
2− |z1|(1 + |z1|2)

=
|z1|(1 + |z1|)

2 + |z1|(1 + |z1|)
≤ 1

2
.

It follows that f is strongly starlike. The map f is Lipschitz continuous but not quasiconfor-
mal in B2: the eigenvalues of Df are 1 and 1− z1 and their ratio is not uniformly bounded.
Observe also that ||w||∞ =∞.
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Example 2: Let f(z1, z2) = (z1, z2(1− z31)−1/3). Then

Df =

 1 0
z21z2

(1−z31)4/3
1

(1−z31)1/3


and

(Df)−1(f) = w = (z1,
z2(1− 2z31)

1− z31
) .

In this case g is given by

g(ζ) = |z1|2 +
|z2|2(1− 2z31ζ

3)

1− z31ζ3

and the corresponding function σ is easily computed to be

σ(ζ) = − (1− |z1|2)z31ζ3

2− (1 + |z1|2)z31ζ3
.

Hence

|σ(ζ)| ≤ |z1|3(1− |z1|2)
2− |z1|3(1 + |z1|2)

=
|z1|3(1 + |z1|)

2 + |z1|(1 + |z1|)(2 + |z1|2)
≤ 1

4
.

This shows that f is strongly starlike. This time, f is not Lipschitz continuous and, as
before, the map fails to be quasiconformal. Again, ||w||∞ =∞.

Example 3: A vast class of strongly starlike mappings with uniformly bounded w can be
obtained by prescribing w in the form

w(z) = (I + Ez)
−1(I− Ez)(z) , (4.1)

where Ez is an n×n matrix depending holomorphically in z with E0 = 0 and ||Ez|| ≤ c < 1.
(For convenience we shall simply write E for Ez.) Indeed,

w + z = (I + E)−1{(I− E)(z) + (I + E)(z)} = 2(I + E)−1(z)

and similarly
w − z = −2E(I + E)−1(z) = −E(w + z) ,

hence
|w − z|2 ≤ ||E||2|w + z|2 .

The general form of Schwarz lemma implies that ||E|| ≤ c|z| and so

|w − z|2 ≤ c2|z|2|w + z|2 .

From this we conclude that

|z|21− c|z|
1 + c|z|

≤ Re〈z̄, w〉 ≤ |z|2 1 + c|z|
1− c|z|

where the right hand inequality is a consequence of the definition of w and the Cauchy-
Schwarz inequality. This shows that a mapping f with (Df)−1(f) = w is strongly starlike.
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But can w with Re〈z̄, w〉 ≥ 0 be prescribed arbitrarily? In dimension 1 the solution f can
be found explicitly by integration. In higher dimension we consider the flows

dz

dt
= w(z) (4.2)

and
dF

dt
= F . (4.3)

The condition of starlikeness, (Df)(w) = f , translates to the fact that f takes integral curves
of (4.2) to those of (4.3). We will call such a map a conjugation of flows. Both vector fields
in question, w and the identity, have an isolated critical point at 0 and moreover, the latter
is simply the linear part of w at the origin. Conjugating a given flow to its linear part at a
critical point is a classical problem in the theory of stability of ordinary differential equations,
and the existence of a (local) conjugating map depends on the nature of the eigenvalues of
the aforementioned linear part. Depending also on the degree of smoothness of the vector
field, it is a problem that can be posed in the Ck,C∞ or holomorphic category ([H]).

In his thesis, Poincaré answered the question for holomorphic w and his result applies
in our particular and simplest case when all eigenvalues are equal to 1 ([A, p.181]). The
solution f is a biholomorphism in a neighborhood of the origin and can be extended to the
ball since w is holomorphic there and has no other critical points.

Poincaré’s proof consists of first showing that there exists a formal power series solution
and then proving convergence of the resulting series. When w is given explicitly, there is an
often more effective way of computing the map f . We will obtain f as a limit of conjugating
maps, and since for the moment we are interested in constructing examples only, certain
facts will be claimed here without proofs. Because the vector field w is transverse to centered
spheres, for ε ≤ |z| < 1 we can define uniquely a continuous map fε by the conditions:

(1) fε(z) = z for |z| = ε,

(2) fε conjugates the flows for |z| > ε.

These maps are quite easy to deal with as the flows now have no critical points. A simple
integration together with Lemma 1 yields the estimates

(1 + εc)2|z|
(1 + c|z|)2

≤ |fε(z)| ≤ (1− εc)2|z|
(1− c|z|)2

. (4.4)

Using the fact that Re〈z̄, w〉 ≥ 0 and that Dw(0) = I it can be shown that as ε → 0, {fε}
converges uniformly on compact subsets of the punctured ball. In addition, the limiting map
f satisfies

|f(z)− z| = o(|z|) .

Therefore, f can be extended as a differentiable map at 0, with Df(0) = I. By construction,
f is a conjugation and we conclude that it must be the desired biholomorphisms. (If F1, F2

are two conjugations with DF1(0) = DF2(0) then G = F1 ◦ F−12 conjugates the flow along
rays from the origin to itself. Since DG(0) = I it is easy to show that G must be the
identity, thus F1 = F2.) With this, (4.4) gives back the growth for starlike and strongly
starlike mappings.
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Example 4: Let w(z1, z2) = (z1(1 + z2), z2(1 + z1)). Then w is normalized and

Re〈z̄, w〉 = |z1|2Re(1 + z2) + |z2|2Re(1 + z1) ≥ 0 .

The equations for the w-flow are

dz1
dt

= z1(1 + z2) and
dz2
dt

= z2(1 + z1)

and can be solved by first eliminating the parameter. If the initial conditions are z1(0) = εa
and z2(0) = εb, |a|2 + |b|2 = 1, then one finds

z1(t) =
εa(a− b)et

a− beε(b−a)eε(a−b)et
(4.5)

and

z2(t) =
εb(b− a)et

b− aeε(a−b)eε(b−a)et
. (4.6)

The map fε is defined so that

fε(z1(t), z2(t)) = (εaet, εbet) . (4.7)

From this we have to once again eliminate the parameter t and then let ε → 0. With
fε = (f1, f2) (we have omitted the ε-dependence), equations (4.5), (4.6) and (4.7) give

z1 = a
f1 − f2

a− beε(b−a)ef1−f2
=

f1(f1 − f2)
f1 − f2ef1−f2eε(b−a)

and

z2 =
f2(f2 − f1)

f2 − f1ef2−f1eε(a−b)
.

We let ε→ 0 to obtain

z1 =
f1(f1 − f2)
f1 − f2ef1−f2

, (4.8)

z2 =
f2(f2 − f1)
f2 − f1ef2−f1

. (4.9)

To invert this system first observe that

z2
z1

=
f2
f1
ef1−f2 (4.10)

which inserted in (4.8) gives
f1 − f2 = z1 − z2 . (4.11)

Equation (4.10) and (4.11) finally yield the mapping f = (f1, f2):

f1 =
z1(z1 − z2)ez1
z1ez1 − z2ez2

,
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f2 =
z2(z2 − z1)ez2
z2ez2 − z1ez1

.

It can be checked directly that indeed Df(w) = f . The reader interested in verifying this
may want to use (4.11) and (4.10) (after taking logarithms) to obtain useful relations between
the partial derivatives of f1 and f2.

Finally we would like to mention a related problem we might address in a future paper.
The first two examples in this section exhibited strongly starlike mappings that were not
quasiconformal. As pointed out at the time, in both cases ||w||∞ = ∞. So far, we have
been unable to produce an example of a strongly starlike map with finite ||w||∞ which
is not quasiconformal. A proof that all strongly starlike mappings with ||w||∞ < ∞ are
quasiconformal has also eluded us, even in the case when w is given as in (4.1). There are
some partial results, nevertheless. The map f will be quasiconformal provided the mappings
fε are uniformly quasiconformal, at least for small ε. This is the case when, for instance, w
is given as in (4.1) and the entries of E have uniformly bounded derivatives.
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